1.

The function y=f(x) is the solution of the differential equation `[dy]/[dx]+[xy]/[x^2-1]=[x^4+2x]/sqrt[1-x^2]` in (-1, 1), satisfying `f(0)=0`. Then `int_[-sqrt3/2]^[sqrt3/2] f(x)dx` is (A) ` pi/3 - sqrt3/2` (B) ` pi/3 - sqrt3/4` (C) ` pi/6 - sqrt3/4` (D) ` pi/6 - sqrt3/2`A. `(pi)/(3)-(sqrt3)/(2)`B. `(pi)/(3)-(sqrt3)/(4)`C. `(pi)/(6)-(sqrt3)/(4)`D. `(pi)/(6)-(sqrt3)/(2)`

Answer» Correct Answer - B
We have,
`(dy)/(dx)+(xy)/(x^(2)-1)=(x^(4)+2x)/(sqrt(1-x^(2)))" ...(i)"`
This is a linear differential equation with
`"I.F."=e^(int(x)/(x^(2)-1)dx)=e^((1)/(2)log|x^(2)-1|)=e^((1)/(2)log(1-x^(2)))=sqrt(1-x^(2))`
Multiplying both sides of (i) by I.F. and integrating with respect to x, we obtain
`ysqrt(1-x^(2))=int(x^(4)+2x)dx+C`
or, `ysqrt(1-x^(2))=(x^(5))/(5)+x^(2)+C" ...(ii)"`
Putting x = 0 and y = f (0) = 0 in (ii), we get C = 0
Putting C = 0 in (ii), we get
`ysqrt(1-x^(2))=(x^(5))/(5)+x^(2)`
`rArr" "f(x)-(x^(5))/(5sqrt(1-x^(2)))+(x^(2))/(sqrt(1-x^(2)))`
`therefore" "int_(-sqrt3//2)^(sqrt3//2)f(x)dx=int_(-sqrt3//2)^(sqrt3//2)(x^(5))/(sqrt(1-x^(2)))dx+int_(-sqrt3//2)^(sqrt3//2)(x^(2))/(sqrt(1-x^(2)))dx`
`=2int_(0)^(sqrt3//2)(x^(2))/(sqrt(1-x^(2)))dx`
`=2int_(0)^(pi//3)sin^(2)d theta," where x "=sin theta`
`=int_(0)^(pi//3)(1-cos2 theta)d theta`
`[theta-(1)/(2)sin2 theta]_(0)^(pi//3)=(pi)/(3)-(sqrt3)/(4)`


Discussion

No Comment Found

Related InterviewSolutions