InterviewSolution
Saved Bookmarks
| 1. |
The general solution of a differential equation of the type dxdy+P1x=Q1 is (a) ye∫P1 dy=∫(Q1e∫P1 dy)dy+C (b) ye∫P1 dx=∫(Q1e∫P1 dx)dx+C (c) xe∫P1 dy=∫(Q1e∫P1 dy)dy+C (d) xe∫P1 dx=∫(Q1e∫P1 dx)dx+C |
|
Answer» The general solution of a differential equation of the type dxdy+P1x=Q1 is (a) ye∫P1 dy=∫(Q1e∫P1 dy)dy+C (b) ye∫P1 dx=∫(Q1e∫P1 dx)dx+C (c) xe∫P1 dy=∫(Q1e∫P1 dy)dy+C (d) xe∫P1 dx=∫(Q1e∫P1 dx)dx+C |
|