InterviewSolution
Saved Bookmarks
| 1. |
The general solution of `(dy)/(dx)=2xe^(x^(2)-y)` isA. `e^(x^(2)-y)=C`B. `e^(-y)+e^(x^(2))=C`C. `e^(y)+e^(x^(2))+C`D. `e^(x^(2)+y)=C` |
|
Answer» Given that, `" "(dy)/(dx)=2xe^(x^(2)-y)=2xe^(x^(2))*e^(-y)` `rArr" "e^(y)(dy)/(dx)=2xe^(x^(2))` `rArr" "e^(y)dy=2xe^(x^(2))dx` On integrating both sides, we get `" "inte^(y)dy=2intxe^(x^(2))dx` Put `x^(2)=t` in RHS integral, we get `" "2xdx=dt` `" "inte^(y)dy=inte^(t)dt` `rArr" "e^(y)=e^(t)+C` `rArr" "e^(y)=e^(x^(2))+C` |
|