1.

The general solution of the differential equation `(y^(2)-x^(3))dx-xydy=0 (x ne0)` is (where, C is a constant of integration)(A) `y^(2)-2x^(2)+Cx^(3) =0`(B) `y^(2)+2x^(3)+Cx^(2) =0`(C) `y^(2)+2x^(2)+Cx^(3) =0`(D) `y^(2)-2x^(3)+Cx^(2) =0`A. (a) `y^(2)-2x^(2)+Cx^(3) =0`B. (b) `y^(2)+2x^(3)+Cx^(2) =0`C. (c) `y^(2)+2x^(2)+Cx^(3) =0`D. (d) `y^(2)-2x^(3)+Cx^(2) =0`

Answer» Correct Answer - (b)
Given differential equation is
`(y^(2)-x^(3))dx-xy dy=0, (xne0)`
`rArr xydy/dx-y^(2)=-x^(3)`
Now, put `y^(2)=trArr 2y dy/dx = (dt)/dx rArr ydy/dx=1/2 (dt)/dx`
`therefore x/2 (dt)/dx-t=-x^(3)`
`rArr (dt)/dx -2/xt =-2x^(2)`
which is the linear differential equation of the form
`(dt)/dx+Pt=Q.`
Here, `p=-2/xand Q=-2x^(2).`
Now, `IF=e^(-f2/x dx)=1/x^(2)`
`therefore` solution of the linear differential equation is
`(IF) t=intQ(IF)dx+ lambda` [where `lambda` is integrating constant ]
`therefore t(1/x^(2))=-2int(x^(2) xx 1/x^(2))dx + lambda`
`rArr t/x^(2) =-2x+lambda`
`rArr y^(2) /x^(2) +2x =lambda` `[therefore t=y^(2)]`
`rArr y^(2) + 2x^(3) - lambda x^(2) = 0`
or `y^(2) +2x^(3) +cx^(2)=0` " [let C"=-`lambda]`


Discussion

No Comment Found

Related InterviewSolutions