InterviewSolution
Saved Bookmarks
| 1. |
The general solution of the differential equation `(dy)/(dx)+(2)/(x)y=x^(2)`, isA. `y=cx^(2)+(x^(3))/(5)`B. `y=cx^(-2)+(x^(3))/(5)`C. `y=cx^(3)-(x^(3))/(4)`D. `y=cx^(-3)(x^(2))/(4)` |
|
Answer» Correct Answer - B The general solution of the differential equation `(dy)/(dx)+Py=Q`, where `P=(2)/(x) and Q=x^(2)`. I.E. `=e^(intPdx)=e^(int(2)/(x)dx)=e^(2logx)+x^(2)` Multiplying both sides of the differential equation by I.E. `=x^(2)` and integrating with respect to x, we get `yx^(2)=(x^(5))/(5)+c or, y=(x^(3))/(5)+cx^(-2)` |
|