InterviewSolution
| 1. |
The height of a right circular cone is 21 cm and area of its curved surface area is 3 times the area of its base, then what is the volume (Approx.) of the cone?1. 1213 cm32. 1212 cm33. 1214 cm34. 1215 cm3 |
|
Answer» Correct Answer - Option 1 : 1213 cm3 Given: Height of the cone = 21 cm Formula used: Curved surface area of a right circular cone = πrl Volume of a cone = \(\left( {\frac{1}{3}} \right) \times {\rm{\pi }} \times {{\rm{r}}^2} \times {\rm{h}}\) Area of circle = πr2 \({\rm{h}} = {\rm{\;}}\sqrt {{{\rm{l}}^{2{\rm{\;}}}} - {\rm{\;}}{{\rm{r}}^2}} \) Where r = radius, l = slant height, h = height of a cone Calculation: According to the question, πrl = 3πr2 ⇒ l = 3r ⇒ l/r = 3/1 \({\rm{h}} = {\rm{\;}}\sqrt {{{\rm{l}}^{2{\rm{\;}}}} - {\rm{\;}}{{\rm{r}}^2}} \) ⇒ \({\rm{h}} = {\rm{\;}}\sqrt {{{\rm{3}}^{2{\rm{\;}}}} - {\rm{\;}}{{\rm{1}}^2}} \) ⇒ \({\rm{h}} = {\rm{\;}}\sqrt {{{\rm{9}{\rm{\;}}}} - {\rm{\;}}{{\rm{1}}}} \) ⇒ h = √8 ⇒ h = 2√2 ⇒ 21 = 2√2 ⇒ r = 21/2√2 \(\left( {\frac{1}{3}} \right) \times {\rm{\pi }} \times {{\rm{r}}^2} \times {\rm{h}}\) = \(\left( {\frac{1}{3}} \right) \times {\frac{22}{7}} \times ({{\frac{21}{2\sqrt 2}})^2} \times {\rm{21}}\) ⇒\(\left( {\frac{1}{3}} \right) \times {\frac{22}{7}} \times ({{\frac{441}{8}})} \times {\rm{21}}\) ⇒ 22 × 63/8 × 7 ⇒ 1212.75 ⇒ Volume = 1212.75 cm3 ≈ 1213 cm3 ∴ Volume of the cone is 1213 cm3 |
|