1.

The integral `int (dx)/(a cos x + b sin x)` is of the form `(1)/(r) " In" [tan ((x + alpha)/(2))]` What is r equal to ?A. `a^(2) + b^(2)`B. `sqrt(a^(2) + b^(2))`C. `a + b`D. `sqrt(a^(2) + b^(2))`

Answer» Correct Answer - B
Given that, `int (dx)/(a cos x + b sin x) = (1)/(r) ln [tan ((x + alpha)/(2))]`
Let `a = r sin alpha, b = r cos alpha`
`int (dx)/(r sin alpha cos x + r cos alpha sin x) = (1)/(r) int (1)/(sin (x + alpha))`
`= (1)/(r) int "cosec"(x + alpha) dx = (1)/(r) ln [tan((x + alpha)/(2))]`
`a = r sin alpha rArr a^(2) = r^(2) sin^(2) alpha`...(i)
`b = r cos alpha rArr b^(2) = r^(2) cos^(2) alpha`...(ii)
Adding (i) and (ii), we get
`r^(2) = a^(2) + b^(2)`
`rArr r= sqrt(a^(2) + b^(2))`


Discussion

No Comment Found

Related InterviewSolutions