InterviewSolution
Saved Bookmarks
| 1. |
The integrating factor of differential euation `(1-x^(2))(dy)/(dx)-xy=1 "is"`A. `-x`B. `(x)/(1+x^(2))`C. `sqrt(1-x^(2))`D. `(1)/(x)log(1-x^(2))` |
|
Answer» Given that, `" "(1-x^(2))(dy)/(dx)-xy=1` `rArr" "(dy)/(dx)-(x)/(1-x^(2))y=(1)/(1-x^(2))` which is a linear differential equation. `therefore" "IF=e^(-int(x)/(1-x^(2))dx)` Put `" "1-x^(2)=trArr-2xdx=dtrArrxdx=-(dt)/(2)` Now, `" "IF=e^((1)/(2)int(dt)/(t))=e^((1)/(2)logt)=e^((1)/(2)log(1-x^(2)))=sqrt(1-x^(2))` |
|