InterviewSolution
Saved Bookmarks
| 1. |
The integrating factor of the differentialequation `(dy)/(dx)(x(log)_e x)+y=2(log)_e x`is given by(a)`( b ) x (c)`(d)(b) `( e ) (f) (g) e^(( h ) x (i))( j ) (k)`(l)(c) `( m ) (n) (o)(( p )log)_( q ) e (r) (s) x (t)`(u)(d) `( v ) (w) (x)(( y )log)_( z ) e (aa) (bb)(( c c )(( d d )log)_( e e ) e (ff) (gg) x)( h h )`(ii)A. `e^(x)`B. log xC. log(log x)D. x |
|
Answer» Correct Answer - b ` (dy)/(dx) (xlog x) +y = 2 log x` ` rArr (dy)/(dx) +y/(x log x ) = 2/x` Here , ` P = 1/(x log x ),Q = 2/x` ` :. IF = e^(intPdx) = e^(int(dx)/(x logx) )= log x ` |
|