1.

The kinetic energy K of a particle moving along a circle of radius R depends upon the distance s as `K=as^2`. The force acting on the particle isA. (a) `2a(s^2)/(R)`B. (b) `2as[1+(s^2)/(R)]^(1//2)`C. (c) `2as`D. (d) `2a`

Answer» Correct Answer - B
Given that `K=as^2` or `1/2mv^2=as^2`
or `mv^2=2as^2` (i)
Differenciating w.r.t. time, we get
`m_2vxx(dv)/(dt)=2axx2sxx(ds)/(dt)`
But `(ds)/(dt)=v`
So `2m(dv)/(dt)=4as` or `m(dv)/(dt)=2as`
Now, `m(dv)/(dt)`=tangential force `=F_t`
`F_t=2as`
Centripetal force `=F_r(mv^2)/(R)=(2as^2)/(R)`
`F_(n et)=sqrt(F_t^2+F_r^2)=sqrt((2as)^2+((2as^2)/(R))^2)`
`=2assqrt(1+s^2/R^2)`


Discussion

No Comment Found

Related InterviewSolutions