1.

The length, breadth, and height of a cuboid are in the ratio of 8 : 4 : 1. If the length of the diagonal is 162 cm, find the height of the cuboid.1. 9 cm2. 18 cm3. 36 cm4. 48 cm

Answer» Correct Answer - Option 2 : 18 cm

Given-

Length of diagonal = 162 cm

Ratio of length, breadth and height of the cuboid = 8 : 4 : 1

Formula Used-

Diagonal of a cuboid = \(\sqrt{l^2 + b^2 + h^2}\)l2+b2+h2−−−−−−−−−−√l2+b2+h2

Calculation -

Let  the length, breadth and height of cuboid be  8x, 4x and  x

Now,

\(\sqrt{8x^2 + 4x^2 + x^2}\) = 162

⇒ \(\sqrt{81x^2}\) = 162

⇒ 9x = 162

⇒ x = 18 cm

∴ Height of cuboid = 1 × 18 = 18 cm



Discussion

No Comment Found

Related InterviewSolutions