InterviewSolution
Saved Bookmarks
| 1. |
The length , radius , tension and density of string`A` are twice the same parameters of string `B`. Find the ratio of fundamental frequency of `B` to the fundamental frequency of `A`. |
|
Answer» Correct Answer - `4` `f prop ((T//mu)^(1//2))/( L)` When `mu = mass per unit length = rho a = rho ( pi r^(2))` So , `f prop ((T//rho)^(1//2))/( r L)` `(f_(2))/(f_(1)) = ((T_(2))/(T_(1)))^(1//2) ((rho_(1))/(rho_(2)))^(1//2) ((r_(1) L_(1))/(r_(2) L_(2)))` `= ((1)/(sqrt(2))) ( sqrt(2)) (4) = 4` |
|