1.

The length , radius , tension and density of string`A` are twice the same parameters of string `B`. Find the ratio of fundamental frequency of `B` to the fundamental frequency of `A`.

Answer» Correct Answer - `4`
`f prop ((T//mu)^(1//2))/( L)`
When `mu = mass per unit length = rho a = rho ( pi r^(2))`
So , `f prop ((T//rho)^(1//2))/( r L)`
`(f_(2))/(f_(1)) = ((T_(2))/(T_(1)))^(1//2) ((rho_(1))/(rho_(2)))^(1//2) ((r_(1) L_(1))/(r_(2) L_(2)))`
`= ((1)/(sqrt(2))) ( sqrt(2)) (4) = 4`


Discussion

No Comment Found

Related InterviewSolutions