InterviewSolution
Saved Bookmarks
| 1. |
The line `y=m x-((a^2-b^2)m)/(sqrt(a^2+b^2m^2))`is normal to the ellise `(x^2)/(a^2)+(y^2)/(b^2)=1`for all values of `m`belonging to`(0,1)`(b) `(0,oo)`(c) `R`(d) none of theseA. (0,1)B. `(0,oo)`C. RD. none of these |
|
Answer» The eqquation of the normal to the given ellipse at the point `P(a cos theta, b sin theta) "is" ax sec theta- "by cosec" theta=a^(2)-b^(2)`. Then, `y=((a)/(b) tan theta)x-((a^(2)-b^(2)))/(b) sin theta" "(1)` Let `(a)/(b) tan theta=m` so that `y=((a)/(b) tan theta)x-((a^(2)-b^(2)))/(b) sin theta" "(1)` Hence, the equation of the normal equation (1) becomes `y=mx-((a^(2)-b^(2)))/(sqrt(a^(2)+b^(2)m^(2)))` ltbrlt `:. m in R, "as" m=(a)/(b) tan theta in R` |
|