

InterviewSolution
Saved Bookmarks
1. |
The magnitude of the gravitational field at distance `r_(1)` and `r_(2)` from the centre of a uniform sphere of radius `R` and mass `M` are `F_(1)` and `F_(2)` respectively. Then:A. `(F_(1))/(F_(2))=(r_(1))/(r_(2))` if `r_(1)ltR` and `r_(2)ltR`B. `(r_(2)^(2))/(r_(2))` if `r_(1)gtR` and `r_(2)gtR`C. `(F_(1))/(F_(2))=(r_(1))/(r_(2))` if `r_(1)gtR` and `r_(2)gtR`D. `(F_(1))/(F_(2))=(r_(1)^(2))/(r_(2)^(2)` if `r_(1)ltR` and `r_(2)ltR` |
Answer» Correct Answer - A::B For `rgtR,` the gravitational field is `F=GM//r^(2)` `:. F_(1)=(GM)/(r_(1)^(3))` and `F_(2)=(GM)/(r_(2)^(2))implies(F_(1))/(F_(2))=(r_(2)^(2))/(R_(1)^(2))` For `rgt gtR` The gravitational field is `F=(GM)/(R^(3))xxr` `:. F_(1)=(GM)/R^(3)xxr_(1)` and `F_(2)=(GM)/(R^(3))xxr_(2)` `implies (F_(1))/(F_(2))=(r_(1))/(r_(2))` |
|