

InterviewSolution
Saved Bookmarks
1. |
The maximum distance of the centre of the ellipse `x^2/(81)+y^2/(25)=1` from a normal to the ellipse is |
Answer» let us take a point as `(9cos theta , 5sin theta)` the tangent on the point will be ` (x*9cos theta)/81 + (y*5*sin theta)/25 = 1 ` `(x*Cos theta)/9 + (y*sin theta)/5 = 1` `y= (-5*cos theta)/(9*sin theta)* x + 5/ sin theta` so slope will be `(5Cos theta)/ (9 sin theta)` as we know that, slope of tangent * slope of normal = -1 so, slope of normal is `(9*Sin theta)/(5*cos theta)` for normal `y- sin theta = (9*sin theta)/(5* cos theta) * (x- 9*cos theta)` `5*y*cos theta - 25*sin theta*cos theta = 9*x*sin theta - 81* sin theta` `5*y*cosec theta - 25 = 9*x*sec theta - 81` `9*x*sec theta - 5*y*cosec theta - 56=0 ` ` now, for centre (0,0)` `|(0-0-56)/sqrt(81*cosec^2 theta +25*cosec^2 theta)| = 56/sqrt(81*sec^2 theta + 25*cosec^2 theta) ` sloving for denominator let `sqrt(81*sec^2 theta + 25*cosec^2 theta) = x` for maximum value the condition must be true that `(dx)/(d theta) = 0` So, differentiating we get, ` (81*sec^2 theta * tan theta - 25* 2*cosec^2 theta * cot theta)/ (2*sqrt(81*sec^2 theta + 25* cosec^2 theta)) = 0` `81*sec^2 theta * tan theta = 25* cosec^2 theta * cot theta` `(81*sin theta)/ cos ^ 3 theta = 25*cos theta / sin ^ 3 theta` `Sin^4 theta/ cos^4 theta = 25/81` `tan^2 theta = 5/9` `cot^2 theta = 9/5` now putting in main equation `56/sqrt(81*(1+tan^2 theta) + 25*(1+ cot^2 theta)) ` `= 56/ sqrt(81*(1+5/9) + 25*(1+9/5))` `= 56/sqrt(9*14+ 5*14)` `= 56/ 14 = 4` |
|