Saved Bookmarks
| 1. |
The maximum value of [x(x − 1) + 1]1/3, 0≤ x ≤ 1 is :(a) 0(b) 1/2(c) 1(d) \(\sqrt[3]{\frac{1}{3}}\) |
|
Answer» Option : (c) Let f(x) = [x(x − 1) + 1]1/3, 0 ≤ x ≤ 1 f'(x) = \(\frac{2x-1}{3(x^2-x+1)^{\frac{2}{3}}}\) Let f'(x) = 0 ⇒ x = \(\frac{1}{2}\)∈ [0,1] f(0) = 1, f(\(\frac{1}{2}\)) = \((\frac{3}{4})^\frac{1}{3}\) and f(1) = 1 ∴ Maximum value of f(x) is 1. |
|