Saved Bookmarks
| 1. |
The motion of a particle in S.H.M. is described by the displacement function, x= A cos(omega t+ phi),If the initial (t=0) position of the particle is 1 cm and its initial velocity is omega cms^(-1) , what are its amplitude and initial phase angle ? The angular frequency of the particles is pi s^(-1) . If instead of the cosine function, we choose the sine function to describe the SHM , x= B sin(omega t + alpha) , what are the amplitude and initial phase of the particle with the above initial conditions. |
|
Answer» SOLUTION :Here , at t=0, x=1 cm and `V = omega cm s^(-1) , omega = pi s^(-1)` Given x=A `cos (omega t +PHI)` `therefore 1 = A cos (pi xx 0 + phi) = A cos phi""….(i) ` Velocity , `V = (dx)/(dt) =- A omega sin (omega t + phi)` `therefore =- A omega sin (pi xx 0 + phi) ` (or) `1=-Asin phi ` (or) `A sin phi =-1 ""....(ii)` Squaring and ADDING (i) and (ii) `A^2cos^2 phi + sin^2 phi) = 1+2` (or)` A^2 =2 ` (or) `A = sqrt2 ` cm Dividing (ii) by (i) we get `tan phi` =-1 (or) `phi = (3pi)/(4) ` (or)` (7pi)/(4) ` For , `x= B sin (omega t + alpha)"".....(iii)` At t=0 , x=1 , so, 1= Bsin `(omega xx 0 + alpha)= B sin alpha ""....(iv)` Differentiating (iii), w.r.t.t, we have velocity , `V= (dx)/(dt) = B omega cos (omega t+ alpha)` Applying initial CONDITIONS i.e., at `t=0 , V= omega` `omega = B omega cos (pi xx 0 + alpha)` or `1= B cos alpha""....(iv)` Squaring and adding (iv) and(v) , we get `B^2 sin^2 alpha + B^2 cos^2 alpha = 1^2 + 1^2 = 2 `or `B^2 = 2 ` or `B= sqrt2 ` cm Dividing (iv) by (v) , we have `(B sin alpha)/(B cos alpha) = 1/1 ` (or) `tan alpha = 1 `(or)` alpha = pi//4 ` or `5pi//4`. |
|