InterviewSolution
Saved Bookmarks
| 1. |
The number of different possible values for the sum x+y+z, where x,y,z are real numbers such that `x^(4)+4y^(4)+16z^(4)+64=32 xyz` is(A) 1 (B) 2 (C) 4 (D) 8A. 1B. 2C. 4D. 8 |
|
Answer» Correct Answer - C Applying Am`ge`gm. `(x^(4)+4y^(4)+16z^(4)+64)/(4) ge(4^(6)x^(4)y^(4)z^(4))^(1//4)` `x^(4)+4y^(4)+16z^(4)+64ge32|xyz|` So equal when each term is equal `:. X^(4)+4y^(4)=16z^(4)=64` `impliesx=pm2sqrt(2)` `y=pm2` `x= pmsqrt(2)` For x.y.z For `X^(4)+4y^(4)+16z^(4)_64=32xyz` Either each of x,y,z is (+)ve`to` 1 case/ Or two of x,y,z are (-)ve `to ` 3 cases `:.` 4 cases of different (x,y,z) triplets `:.` 4 possible x+y+z values (as `x ne y ne z`) |
|