InterviewSolution
Saved Bookmarks
| 1. |
The number of points from where a pair of perpendiculartangents can be drawn to the hyperbola, `x^2 sec^2 alpha -y^2 cosec^2 alpha=1, alpha in (0, pi/4)`, is (A) 0 (B) 1 (C) 2 (D) infinite |
|
Answer» Correct Answer - D `(x^(2))/(cos^(2)alpha) - (y^(2))/(sin^(2)alpha) =1` Locus of perpendicular tangents is director circle, `x^(2) + y^(2) = a^(2) - b^(2)` or `x^(2)+y^(2) = cos^(2) alpha - sin^(2) alpha = cos 2 alpha` But `0 lt alpha lt (pi)/(4)` `0 lt 2 alpha lt (pi)/(2)` So there are infinite points. |
|