1.

The number of solutions of the equation `z^2+z=0` where z is a a complex number, isA. 1B. 2C. 3D. 4

Answer» Correct Answer - D
Let `z = x + iy`, so that `barz = x -iy`.
`therefore z ^(2) + barz = 0`
`rArr (x^(2) -y^(2) + x) + i(2xy - y) = 0`
Equating real and imaginary parts, we get
`x ^(2)- y^(2) + x = 0`
and `2xy - y = 0 rArr y = 0 or x = (1)/(2)`
If `y 0`, then (1) given `x^(2) + x= 0`
`rArr x = 0 or x = -1`
If `x = 1//2`, then from Eq.(1)
`y^(2) = (1)/(4) + (1)/(2) = (3)/(4) or y = pm (sqrt(3))/(2)`
Hence, there are four solutions in all.


Discussion

No Comment Found

Related InterviewSolutions