InterviewSolution
Saved Bookmarks
| 1. |
The number of solutions to the equations `cos^(4)x+(1)/(cos^(2)x)=sin^(4)x+(1)/(sin^(2)x)` in the interval `[0,2pi]` isA. 6B. 4C. 2D. 0 |
|
Answer» Correct Answer - B `cos^(4)x-sin^(4)x=(1)/(sin^(4)x)-(1)/(cos^(2)x)` `(cos^(2)x-sin^(2)x)=((cos^(2)x-sin^(2)x))/(sin^(2)xcos^(2)x)` `cos2x=(4cos2x)/(sin^(2)2x)` `cos 2x=(1-4"cosec"^(2)2x)=0` `cos 2x=0` `2x=2npi+-(pi)/(2)` `x=npi+-(4)/(pi)` At `n=0,x=(pi)/(4)` `n=1, n=(5pi)/(4),(3pi)/(4)` `n=2 ,x=(7pi)/(4)` |
|