

InterviewSolution
Saved Bookmarks
1. |
The number of ways in which we can distribute `m n`studentsequally among `m`sections isgiven bya. `((m n !))/(n !)`b. `((m n)!)/((n !)6m)`c. `((m n)!)/(m ! n !)`d. `(m n^m)`A. `((mn)!)/(n!)`B. `((mn)!)/((n!)^(m))`C. `((mn)!)/(m!n!)`D. `((2n)!)/((n!)^(2))` |
Answer» Here, the ordering of sections is important. So, required number of ways `=(((mn)!)/((n!)^(m)m!))m!""=((mn)!)/((n!)^(m))` |
|