Saved Bookmarks
| 1. |
The number of ways of choosing triplet `(x , y ,z)`such that `zgeqmax{x, y}a n dx ,y ,z in {1,2, n ,n+1}`isa. `^n+1C_3+^(n+2)C_3`b. `n(n+1)(2n+1)//6`c. `1^2+2^2++n^2`d. `2((^(n+2)C_3))_(-^(n+2))C_2`A. .^(n+1)C_(2)+^(n+2)C_(3)`B. `(1)/(6)n(n+1)(2n+1)`C. `1^(2)+2^(2)+….+n^(2)`D. `2(` .^(n+2)C_(3))-^(n+2)C_(2)` |
|
Answer» Correct Answer - A::B::C::D if `z=1` so `x,y=1` `x,yto{1,2}` number of ways `=2^(2)` `z=3` `x,y in {1,2,3}` Number of ways `=3^(2)` similarly`n^(2)` `1^(2)+2^(2)…n^(2)` |
|