1.

The only correct combination is :

Answer»

(I)(iii)(R)
(II)(i)(S)
(III)(ii)(P)
(IV)(iv)(Q)

Solution :(I)First line of Balmer SERIES
`n_1=2 " " n_2=3`
`DeltaP.E=27.2xx(Z)^2[1/n_1^2-1/n_2^2]`
=`27.2xx(1)^2[1/4-1/9]=27.2xx5/36=3.78 ev`
`DeltaE=13.6xx(1)^2[1/4-1/9]=1.88 ev`
`barv=Rxx(1)^2[1/4-1/9]=(5R)/(36)`
`lambda=36/(5R)`
Angular momentum=`(3h)/(2pi)-(2H)/(2pi)=(h)/(2pi)`
(II)Third line of PASCHEN series of `He^+` ion
`n_1=3 " " n_2=6`
`DeltaP.E=27.2xx(2)^2[1/9-1/36]=9.06 ev`

`DeltaE=13.6xx(2)^2[1/9-1/36]=4.54 ev`
`barv=Rxx(2)^2[1/9-1/36]=R/3`
`lambda=3/(R)`
Angular momentum=`(6h)/(2pi)-(3h)/(2pi)=(3h)/(2pi)`
(III)Lyman series limit for`Li^(+2)` ion
`n_1=1 " " n_2=oo`
`DeltaP.E=27.2xx(3)^2[1/1^2-1/oo^2]=27.2xx9=244.8 ev`

`DeltaE=13.6xx(9)[1/1^2-1/oo^2]=122.4 ev`
`barv=Rxx(3)[1/1^2-1/oo^2]=9R`
(IV)`2^(nd)` line of Lyman series for `He^+` ion
`n_1=1 " " n_2=3`
`DeltaP.E=27.2xx(2)^2[1/1-1/9]=96.71 ev`

`DeltaE=13.6xx(2)^2[1/1-1/9]=48.4 ev`
`barv=Rxx(2)^2[1/1-1/9]=(32R)/9,lambda=9/(32R)`
Angular momentum=`(3h)/(2pi)-(h)/(2pi)=(2h)/(2pi)=h/pi`


Discussion

No Comment Found