1.

The order and degree the differential equation \( \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+x=\sqrt{1+\frac{d^{2} y}{d x^{2}}} \)are pespectively.

Answer»

Given differential equation is,

\(\frac{d^2y}{dx^2}+\frac{dy}{dx}+x=\sqrt{1+\frac{d^2y}{dx^2}}\)

By Squaring both sides, we get

\((\frac{d^2y}{dx^2}+\frac{dy}{dx}+x)^2=1+\frac{d^2y}{dx^2}\)

\(\Rightarrow\) \((\frac{d^2y}{dx^2})^ 2-\frac{d^2y}{dx^2}+(\frac{dy}{dx})^2+2\,\frac{d^2y}{dx^2}\frac{dy}{dx}+2x\frac{d^2y}{dx^2}+2x\frac{dy}{dx}+x^2=1\)

which is differential equation of order 2 and degree 2.



Discussion

No Comment Found

Related InterviewSolutions