Saved Bookmarks
| 1. |
The overall formation constant of the following reaction is 1 xx 10^(19) Co^(+2) +6CN^(-) Leftrightarrow [Co(CN)_(6)]^(-3) Calculate formation constant of following comples Co^(+3) +6CN^(-) Leftrightarrow[Co(CN)_(6)]^(-3) Given that [Co(CN)_(6)]^(-4) to [Co(CN)_(6)]^(-3) +e^(-), E^(0)=-0.83V Co^(+3) +e^(-) to Co^(+2), E^(0)=1.82 V |
|
Answer» SOLUTION :`CO^(+2) +6CN^(-) Leftrightarrow [Co(CN)_(6)]^(-4)` `K_(1)=([Co(CN)_(6)]^(-4))/([Co^(+2)][CN^(-)]^(6))` And `Co^(+#) +6CN^(-) Leftrightarrow [Co(CN)_(6)]^(-3)` `K_(2)=([Co(CN)_(6)]^(-3))/([Co^(+3)] [CN^(-6)]^(6))` `K_(2)/K_(1) =([Co(CN)_(6)]^(-3) [Co^(+2)])/([Co(CN)_(6)]^(-4) [Co^(+3)])` `[Co(CN)_(6)]^(-4) to [Co(CN)_(6)]^(-3)+e^(-)""E^(@)=-0.83V` `Co^(+3)+e^(-) to Co^(+2) ""E^(@)=1.82V` Net cell REACTION `Co^(+3) +[Co(CN)_(6)]^(-4) to Co^(+2) +[Co(CN)_(6)]^(-3)""E_("Cell")^(@)=0.99V` at equilibrium `E_("cell")=0` `E_("cell")^(@)=(0.0591)/(N) log K_(EQ)` `0.99=(0.0591)/(1) log ([Co^(2+)] [Co(CN)_(6)]^(-3))/([Co^(+3)] [Co(CN)_(6)]^(-4))=(0.059)/(1) log ""K_(2)/K_(1)` `K_(2)/K_(1)=5.64 xx 10^(16)=K_(2)/10^(19) =8.23 xx 10^(44)` `K_(2)=8.23 xx 10^(63)` |
|