InterviewSolution
Saved Bookmarks
| 1. |
The perimeter of a rhombus is 68 cm and one of its diagonals is 30 cm then find the area of the rhombus.1. 384 cm22. 240 cm23. 340 cm24. 278 cm2 |
|
Answer» Correct Answer - Option 2 : 240 cm2 Given: Perimeter of rhombus = 68 cm Diagonal, (d1) = 30 cm Formula used: Perimeter = 4 × side Area of Rhombus = (d1 × d2)/2 Area of Rhombus = Side × Altitude d12 + d22 = 4 × s2 Here, d1, d2, and s are diagonals and side of rhombus respectively. Concept used: All sides of a rhombus are equal and diagonals bisect each other at a right angle. Calculation: Perimeter = 4 × side ⇒ 68 = 4 × side ⇒ side = 17 cm Now, d12 + d22 = 4 × s2 ⇒ 302 + d22 = 4 × 172 ⇒ d22 = 256 ⇒ d2 = 16 Now, Area of Rhombus = (d1 × d2)/2 ⇒ Area of Rhombus = (30 × 16)/2 ∴ Area of Rhombus is 240 cm2 |
|