1.

The perimeters of two similar triangles are 25 cm and 15 cm respectively. If one side of first triangle is 9 cm, what is the corresponding side of the other triangle?

Answer»

Assume ABC and PQR to be 2 triangle. 

We, have 

ΔABC ~ΔPQR 

Perimeter of ΔABC = 25 cm 

Perimeter of ΔPQR = 15 cm 

AB = 9 cm 

PQ = ? 

Since, ΔABC ~ΔPQR 

Then, ratio of perimeter of triangles = ratio of corresponding sides 

So \(\frac{25}{15}\) = \(\frac{AB}{PQ}\), (Corresponding parts of similar triangle area proportion) 

Or \(\frac{25}{15}\) = \(\frac{9}{PQ}\)

Or PQ = 135/25 

Or PQ = 5.4 cm



Discussion

No Comment Found

Related InterviewSolutions