1.

The point of inflection of the function y = ∫(t2 - 3t + 2)dt   x ∈[0,x] is :(A)  (1/2, 3/2)(B)  (3/2, 3/4)(C)  (-3/2, -3/4)(D)  (-1/2, - 3/2)

Answer»

Correct option  (B)  (3/2, 3/4)

Explanation:

Given y = ∫(t2 - 3t + 2)dt   [0,x } Differentiating w.r.to x, we have dy/dx = x2- 3x + 2 & d2y/dx2 = 2x -3.

At the point of inflection d2y/dx2 = 0 & second derivative changes sign while passing through the point of inflection.

Clearly P(3/2, 3/4).



Discussion

No Comment Found

Related InterviewSolutions