1.

The position vectors of the points A, B and C are vector (2i + j - k),(3i - 2j + k) and (i+4j-3k) respectively. Show that the points A, B and C are collinear.

Answer»

A =  \(2\vec{i}+\vec{j}-\vec{k}\)

B =  \(3\vec{i}-2\vec{j}+\vec{k}\)

 C =  \(\vec{i}+4\vec{j}-3\vec{k}\)

\(\vec{AB}\)

\((3\vec{i}-2\vec{j}+\vec{k})\) - \((2\vec{i}+\vec{j}-\vec{k})\)

=    \(\vec{i}-3\vec{j}+2\vec{k}\)

 \(\vec{BC}\) 

  \((\vec{i}+4\vec{j}-3\vec{k})\) - \((3\vec{i}-2\vec{j}+\vec{k})\)

=    \(-2\vec{i}+6\vec{j}-4\vec{k}\)

(-3)\(\vec{AB}\) =  \(\vec{BC}\) 

So, the points A, B and C are collinear.



Discussion

No Comment Found

Related InterviewSolutions