Saved Bookmarks
| 1. |
The power output of a carnot engine is 100 kW. The engine operates between two reservoirs at 30^(@)C and 300^(@)C (i) How much heat is absorbed per hour ? (ii) How much heat is Tost per hour ? |
|
Answer» Solution :`T_(1) = 30^(@)C + 273 = 303 K, T_(2) = 300 + 273 = 573 K` Efficiency `= ETA = ( T_(1) - T_(2))/( T_(1)) = ( 573 - 303)/( 573) = 0. 476` Power output `= W =Q_(1) - Q_(2) = 100 xx 10^(3) (J)/(S)` `eta = (W)/(Q_(1))` `Q_(1) = (w)/(eta) = (10 ^(5))/( 0. 476) ` `= 2.1 xx 10- ^(5) (J)/(s)` Heta absorbed PER hour `= 2.1 xx 10 ^(5) xx 3600` `= 7. 56 xx 10 ^(8) J` Heat lost per second `= Q_(2) = Q_(1) - W` ` = 2.1 xx 10 ^(5) - 10 ^(5) = 1.1 xx 10 ^(5)` Heat lost per hour `= 1.1 xx 10 ^(5) xx 3600 =3.96 xx 10 ^(8) J` |
|