1.

The probability distribution of a discrete random variable X is:X=x12345P(X=x)k2k3k4k5kFind P(X ≤ 4)

Answer»

Given, \(\displaystyle\sum_{i=1}^{n}\) p= 1

∴ k + 2k + 3k + 4k + 5k = 1

∴ 15k = 1

∴ K = \(\frac{1}{15}\)

X = x12345
P(X = x)\(\frac{1}{15}\)\(\frac{2}{15}\)\(\frac{3}{15}\)\(\frac{4}{15}\)\(\frac{5}{15}\)

∴ P(x ≤ 4) = P(x = 1) + P(x = 2) + P(x = 3) + P(x = 4)

\(\frac{1}{15}\) + \(\frac{2}{15}\) + \(\frac{3}{15}\) + \(\frac{4}{15}\)

\(\frac{10}{15}\)

\(\frac{2}{3}\)



Discussion

No Comment Found

Related InterviewSolutions