

InterviewSolution
Saved Bookmarks
1. |
The radioactivity of a sample is `R_(1)` at a time `T_(1)` and `R_(2)` at time `T_(2)`. If the half-life of the specimen is T, the number of atoms that have disintegrated in the time `(T_(2) -T_(1))` is proporational toA. `(R_(1)T_(1) - R_(2)T_(2))`B. `(R_(1)-R_(2))T`C. `(R_(1) - R_(2))//T`D. `(R_(1) - R_(2))(T_(1) - T_(2))` |
Answer» Correct Answer - B `N_(1)=N_(0)e^(-lambdaT_(1)), N_(2)=N_(0)e^(-lambdaT_(2))` `R_(1)=lambdaN_(1), R_(2)= lambdaN_(2)` `(N_(1)-N_(2))=lambda/lambda (N_(1)-N_(2))=((R_(1)-R_(2)))/(lambda)` `T=(log_(e)2)/(lambda), lambda=(log_(e)2)/(T)` `(N_(1)-N_(2))=((R_(1)-R_(2))T)/((log_(e)2))` `(N_(1)-N_(2)) prop (R_(1)-R_(2)) T` |
|