1.

The radius of planet A is half the radius of planet B. If the mass of A is MA, what must be the mass of B so that the value of g on B is half that of its value on A? 

Answer»

 Data : RA = RB/2, gB = \(\frac{1}{2}\) gA, MB = ?

\(g=\frac{GM}{R^2}\)

∴ gA \(\frac{GM_A}{R^{2}_A}\) and gB \(\frac{GM_B}{R^2_B}\)

∴ \(\frac{g_B}{g_A}=(\frac{M_B}{M_A})(\frac{R_A}{R_B})^2\)

∴ \(\frac{1}{2}(\frac{M_B}{M_A})(\frac{1}{2})^2\) = \(\frac{1}{4}(\frac{M_B}{M_A})\)

∴ \(\frac{M_B}{M_A}=\frac{4}{2}\) = 2

∴ MB = 2MA.



Discussion

No Comment Found

Related InterviewSolutions