Saved Bookmarks
| 1. |
The range of `f(x)=[1+sinx]+[2+s in2/x]+[3+s in x/3]++[n+s in x/n]AAx in [0,pi]`, where [.] denotes the greatestinteger function, is,`{(n+n-2^2)/2,(n(n+1))/2}``{(n(n+1))/2}``{(n^2+n-2^)/2,(n(n+1))/2(n^2+n+2)/2}``[(n(n+1))/2,(n^2+n+2)/2]`A. `{(n^(2)+n-2)/(2),(n(n+1))/(2)}`B. `{(n(n+1))/(2)}`C. `{(n^(2)+n-2)/(2),(n(n+1))/(2),(n^(2)+n+2)/(2)}`D. `{(n(n+1))/(2),(n^(2)+n+2)/(2)}` |
|
Answer» Correct Answer - 4 `f(x)=(n(+1))/(2)+[sin x]+["sin"(x)/(2)]+...["sin"(x)/(n)]` Range `in{((n+1))/(2),(n(n+1))/(2)+1}" as x"in[0,pi]` |
|