

InterviewSolution
Saved Bookmarks
1. |
The range of `f(x)=[sinx|[cosx[tanx[secx]]]],x in (0,pi/4),w h e r e`[.] denotes the greatest integer function less than or equal to `x ,`is(0,1) (b) `-{1,0,1}``{1}`(d) none of these |
Answer» Given `f(x)=[sin x+[cosx+[tanx+[secx]]]]` `=[sin+p], " where " P=[cosx +[tanx+[secx]]]]` `=[sinx]+p,` (as p is an integer) `=[sinx]+[cosx+[tanx+[secx]]]]` `=[sinx]+[cosx]+[tanx]+[secx]` Now, for ` x in(0,pi//4),sinx in(0, (1)/(sqrt(2))), cosx in((1)/(sqrt(2)),1), ` `tanx in(0,1), secx in (1, sqrt(2))` or `[sinx]=0,[cosx]=0,[tanx]=0, " and " [secx]=1` Therefore, the range of f(x) is 1. |
|