InterviewSolution
Saved Bookmarks
| 1. |
The rate constant for the first order decomposition of `H_(2)O_(2)` is given by the following equation `: log k =14.34-1.25 K//T.` Calculate `E_(a)` for this reactin and at what temperature will its half-life period be 256 minutes ? |
|
Answer» a) Calculation of activation energy `E_(a)` According to Arrhenius equation: `k=Ae ^(-E_(a)//RT)` `log k= log A-(E_(a))/(2.303RT)-(i)` `log K =14.34-(1.25 xx10^(4)K)/(T)-(ii)` on comparing both equations. `(E_(a))/(2.303RT) =(1.25xx10^(4)K)/(T)` `E_(a) =1.25 xx10^(4) K xx 2.303 xx8.314 (JK^(-1) mol ^(-1))` `= 23.93 xx10^(4) J mol ^(-1) =239.3 kJ mol ^(-1)` b) Calculation of required temperature If `t_(1//2)=256 min. for 1^(st)` order reaction, `k=(0.693)/(t_(1//2))=(0.693)/((256min))=(0.693)/(256xx60S)` According to Arrhenius theory `log k = 14.34 -(1.25 xx10^(4)k)/(T)` `log (4.51xx10^(-5))=14.34 -(1.25xx10^(4)k)/(T)` `(1.25xx10^(4))/(18.69)=669K` `E_(a)=239 . 3 kJ mol^(-1)` `T=669K` |
|