InterviewSolution
Saved Bookmarks
| 1. |
The ratio of the area enclosed by the locus of the midpoint of PS and area of the ellipse is (P-be any point on the ellipse and S, its focus)A. `(1)/(2)`B. `(1)/(3)`C. `(1)/(5)`D. `(1)/(4)` |
|
Answer» Correct Answer - D Let ellipse be `(x^(2))/(a^(2)) +(y^(2))/(b^(2)) =1` Mid point of PS is (h,k) `:. h = (a cos theta +ae)/(2) rArr cos theta = (2h-ae)/(a)` and `k = (b sin theta)/(2)` Eliminating `theta`, we get locus as `((2h-ae)^(2))/(a^(2)) +(4k^(2))/(b^(2)) =1` `rArr ((x-(ae)/(2)))/((a^(2))/(4)) +(y^(2))/((b^(2))/(4))=1`, which is ellipse having enclosed area Area `rArr pi(a)/(2).(b)/(2) = (piab)/(4). :.` ratio `= (1)/(4)` |
|