1.

The ratio of the volumes of two spheres is 1 : 8, then the ratio of their surface areas is 1. 1 : 22. 1 : 43. 1 : 84. None of the above

Answer» Correct Answer - Option 2 : 1 : 4

Given:

The ratio of volume of two spheres = 1 ∶  8

Formula used:

The volume of sphere = (4/3) × π r3

The surface area of sphere = 4π r2

Calculations:

Let us take the radius of  1st sphere to be r1

Let us take the radius of the 2nd sphere to be r2

The volume of  1st sphere to be v1 =  (4/3) × π r13

The volume of  1st sphere to be v1 =  (4/3) × π r23

The ratio of volume the two spheres = \(\)[ (4/3) × π r13] ÷ [(4/3) × π r23]

⇒ [ (4/3) × π r13] ÷ [(4/3) × π r23] = 1 ∶ 8

⇒ (r÷ r2)3 = 1/8

⇒ (r÷ r2)3  = (1/2)3

⇒ r÷ r2 = 1/2

The surface area of 1st sphere = 4π r12

The surface area of 2nd sphere = 4π r22

The ratio of surface area of two spheres = (4π r12) ÷ (4π r22)

⇒ (r÷ r2)2 = (1/2)2

⇒ 1/4 

∴ The ratio of surface area of two spheres = 1 ∶ 4



Discussion

No Comment Found

Related InterviewSolutions