1.

The refractive index of water with respect to vacuum is \(\frac43\)and refractive index of vacuum with respect to glass is \(\frac23\). If the speed the speed of light in glass is 2 × 108 ms-1 , find the speed of light in (i) vacuum, (ii) water.

Answer»

Given; 

Refractive index of (R.I) water w.r.t vacuum = \(\frac43\)

Refractive index (R.I) of vacuum w.r.t glass = \(\frac23\)

Refractive index (R.I) of glass to vacuum will be = \(\frac32\)

Refractive index of glass to water = \(\frac{R.I\,of\,glass}{R.I\,of\,water}= \frac{\frac32}{\frac43}\)

⇒ Refractive index of glass w.r.t water = \(\frac{3\times3}{4\times2}= \frac98\)

⇒ \(\frac{speed\,of\,light\,in\,water}{speed\,of\,light\,in\,glass}= \frac98\)

⇒ \(\frac{speed\,of\,light\,in\,water}{2\times10^8}= \frac98\)

⇒ Speed of light in water = \(\frac{9\times2\times10^8}{8}\)

⇒ Speed of light in water = \(\frac{9\times10^8}{4}\) = 2.25 x 108

Thus, speed of light in water = 2.25 × 108

Refractive index of water w.r.t vacuum = vμw = \(\frac43\)

⇒ \(\frac{speed\,of\,light\,in\,vacuum}{speed\,of\,light\,in\,water}= \frac43\)

⇒ \(\frac{speed\,of\,light\,in\,vacuum}{2.25\times10^8}= \frac43\)

 ⇒ Speed of light in water = \(\frac{4\times2.25\times10^8}{3}\)

⇒ Speed of light in water = \(\frac{9\times10^8}{3}\) 

Thus, speed of light in vacuum is 3 × 108 m/s.



Discussion

No Comment Found