1.

The remainder when x101 + 101 is divided by x + 1 is A) 1 B) 100 C) 101 D) 0

Answer»

Correct option is (B) 100

Let p(x) = \(x^{101}+101\)

\(\because\) When p(x) is divided by (x+1), it leaves remainder p(-1).

Now, p(-1) = \((-1)^{101}+101\) = -1+101 = 100

Hence, the remainder when \(x^{101}+101\) is divided by \((x+1)\) is 100.

Correct option is  A) 1



Discussion

No Comment Found