

InterviewSolution
Saved Bookmarks
1. |
The resultant of `vecP` and `vecQ` is `vec R`. If `vecQ` is doubled, `vecR` is doubled, when `vecQ` is reversed, `vecR` is again doubled, find P : Q : R, |
Answer» Let `theta` be the angle between `vec(P)` and `vec(Q)`.Then `R^(2)=|vec(p)+vec(Q)|^(2)=P^(2)+Q^(2)+2PQ cos theta`…..(i) If `vec(Q)` is doubled, `vec(R)` is doubled. That means ,the magnitude of resultant of `2vec(Q)` and `vec(P)` is `(2R)^(2)=P^(2)+(2Q)^(2)+2P(PQ)cos theta` This Yields `4R^(2)=P^(2)+4Q^(2)+4PQcos theta`....(ii) When `vec(Q)` is reversed,`vec(R)` is doubled. Hence, the magnitude of resultant of `vec(P)` and `(-vec(Q))`is `2R`. Then `(2R)^(2)=P^(2)+Q^(2)+2PQcos(180^(@)-theta)` This yield `4R^(2)=P^(2)+Q^(2)-2PQcos theta`....(iii) (ii)-(i) yields `3Q^(2)+2PQcos theta=3R^(2)`....(iv) (i)+(iii) yield `P^(2)+Q^(2)=(5R^(2))/(2)`...(v) (iii)+(iv) yield `P^(2)+4Q^(2)=7R^(2)`....(vi) Solving (v) and (vi), we obtain `Q=sqrt(3/2)R`and `P=R`. Hence,P:Q:R=`sqrt(2):sqrt(3):sqrt(2)`. |
|