1.

The sequence `{x_(k)}` is defined by `x_(k+1)=x_(k)^(2)+x_(k)` and `x_(1)=(1)/(2)`. Then `[(1)/(x_(1)+1)+(1)/(x_(2)+1)+...+(1)/(x_(100)+1)]` (where `[.]` denotes the greatest integer function) is equal toA. `0`B. `2`C. `4`D. `1`

Answer» Correct Answer - D
`(d)` `(1)/(x_(k+1))=(1)/(x_(k)(x_(k)+1))=(1)/(x_(k))-(1)/(x_(k)+1)`
`implies(1)/(x_(k)+1)=(1)/(x_(k))-(1)/(x_(k-1))`
`:. (1)/(x_(1)+1)+(1)/(x_(2)+1)+...+(1)/(x_(100)+1)=(1)/(x_(1))=(1)/(x_(101))`
As `0 lt (1)/(x_(101)) lt 1`
`:.[(1)/(x_(1)+1)+(1)/(x_(2)+1)+...+(1)/(x_(100)+1)]=1`


Discussion

No Comment Found