1.

The shadow of a pole standing on a level around is found to be 45 m longer when the Sun's altitude is 30^(@) than when it was 60^(@). Determine the height of the pole. [Given sqrt(3) = 1.73]

Answer» <html><body><p></p>Solution :Solution `(x-45)/(<a href="https://interviewquestions.tuteehub.com/tag/h-1014193" style="font-weight:bold;" target="_blank" title="Click to know more about H">H</a>) = <a href="https://interviewquestions.tuteehub.com/tag/cot-936468" style="font-weight:bold;" target="_blank" title="Click to know more about COT">COT</a> 30^(@) <a href="https://interviewquestions.tuteehub.com/tag/rarr-1175461" style="font-weight:bold;" target="_blank" title="Click to know more about RARR">RARR</a> h = (x+45)/(cot 30^(@))` <br/> `x/h = cot 60^(@)` <br/> <a href="https://interviewquestions.tuteehub.com/tag/substituting-1231652" style="font-weight:bold;" target="_blank" title="Click to know more about SUBSTITUTING">SUBSTITUTING</a> the value of x in the above equation <br/> `h = (h cot 60^(@) + 45)/(cot 30^(@))` <br/> `h cot 30^(@) = h cot 60^(@) + 45` <br/> `h = (45)/(cot 30^(@) - cot 60^(@)) = (45)/(sqrt(3) - (1)/(sqrt(3))) = 38.97` m</body></html>


Discussion

No Comment Found