InterviewSolution
Saved Bookmarks
| 1. |
The sides of a triangle `ABC` are in the ratio `3:4:5`. If the perimeter of triangle `ABC` is `60,` then its lengths of sides are: |
|
Answer» Let `A=3x, B=4x, C=5x` but `A+B+C=180^(@)` `rArr 3x+4x+5x=180^(2)` `rArr 12x=180^(@)` `rArr x=15^(@)` `therefore A=3 xx 15^(@)=45^(@)` `B=4 xx 15^(@)=60^(2)` `C=5 xx 15^(2)=75^(@)` Now sinA=`sin45^(@)=1/sqrt(2)` `sinB=sin60^(2)=sqrt(3)/2` `sinC=sin75^(@)=(sin45^(@)+30^(@))` `=sin45^(2)cos30^(2)+cos45^(2)sin30^(@)` `=1/sqrt(2) xx sqrt(3)/2 + 1/sqrt(2)xx 1/2=(sqrt(3)+1)/(2sqrt(2))` `therefore a:b:c = sinA:sinB:sinC` `=1/sqrt(2):sqrt(3)/2:(sqrt(3)+1)/(2sqrt(2))` `=2:sqrt(6):(sqrt(2)+1)`. Ans. |
|