InterviewSolution
Saved Bookmarks
| 1. |
The solution of the differential equation `(1+x^(2))(dy)/(dx)+1+y^(2)=0`, isA. `tan^(-1)x-tan^(-1)y=tan^(-1)C`B. `tan^(-1)y-tan^(-1)x=tan^(-1)C`C. `tan^(-1)y pm tan^(-1)x=tanC`D. `tan^(-1)y+tan^(-1)x=tan^(-1)C` |
|
Answer» Correct Answer - D If `tan^(-1)y+tan^(-1)x=tan^(-1)C`, then `(d)/(dx)(tan^(-1)y)+(d)/(dx)(tan^(-1)x)=0` `rArr" "(1)/(1+y^(2))(dy)/(dx)+(1)/(1+x^(2))=0rArr(1+x^(2))(dy)/(dx)+(1)/(1+y^(2))=0` Hence, `tan^(-1)x+tan^(-1)y=tan^(-1)C` is the solution of the given differential. |
|