InterviewSolution
Saved Bookmarks
| 1. |
The solution of the differential equation `{1/x-y^(2)/(x-y)^(2)}dx+{x^(2)/(x-y)^(2)-1/y}dx=0` isA. ` In |x/y|+(xy)/((x-y))=C`B. ` In |xy|+(xy)/((x-y))=C`C. ` (xy)/((x-y))=Ce^(x//y)`D. ` (xy)/((x-y))=Ce^(xy)` |
|
Answer» Correct Answer - a The given equation can be written as ` ((dx)/y-(dy)/y )+(x^(2)dy-y^(2)dx)/((x-y)^(2))=0` ` rArr ((dx)/x - (dy)/y)+(((dy)/(y^(2)) -(dx)/(x^(2))))/ ((1/y-1/x)^(2))=0` ` rArr ((dx)/x - (dy)/y)+(((dy)/(y^(2)) -(dx)/(x^(2))))/ ((1/x-1/y)^(2))=0` On integrating both sides , we get ` In |x| - In |y| - 1/((1/x-1/y))=C` ` rArr In |x/y| = (xy)/((y-x))= C rArr In |x/y| +(xy)/((x-y)) = C` |
|