1.

The solution of the differential equation `(dy)/(dx) = e^(y+x) +e^(y-x)` isA. ` e^(-y) = e^(x) -e^(-x)+C`B. ` e^(-y) = e^(-x)-e^(x) +C`C. ` e^(-y) = e^(x) +e^(-x)+C`D. ` e^(-y) +e^(x) +e^(-x) =C`

Answer» Correct Answer - b
Given differential equation is
` (dy)/(dx) = e^(y+x) +e^(y-x)`
On integrating both sides , we get
` rArr int e^(-y) dy = int (e^(x)+e^(-x))dx`
` rArr -e^(-y) = e^(x) -e^(-x) -C`
` rArr e^(-y) = e^(-x) -e^(x) +C`


Discussion

No Comment Found

Related InterviewSolutions