InterviewSolution
Saved Bookmarks
| 1. |
The solution of the differential equation `(dy)/(dx)=secx-ytanx` is :A. `ysecx=tanx+c`B. `ysecx+tanx=c`C. `secx=ytanx+c`D. `secx+ytanx=c` |
|
Answer» The given differential equation is , `(dy)/(dx)=secx-ytanx` `therefore(dy)/(dx)+ytanx=secx` This is the linear differential equation of the form `(dy)/(dx)+P*y=Q` where `P=tanxandQ =secx` `thereforeI.F=eintp*dx=einttanx*dxelogsec(x|)=secx` Now , `y*(I.F.)=int(I.F.)Q*dx` `y*secx=intsec^(2)x*dx` `y*secx=tanx+c` Hence ,the correct answer from the given alternative is (a). |
|