1.

The solution of the differential equation `dy/dx=y tanx-2 sinx` is

Answer» `dy/dx = ytanx-2sinx`
`=>dy/dx - ytanx = -2sinx`
Comparing the given equation with first order differential equation,
`dy/dx+Py = Q(x)`, we get,`P = -tanx and Q(x) = -2sinx`
So, Integrating factor `(I.F) = e^(int -tandx)`
`I.F.= e^(-ln|secx|) = 1/secx = cosx`
we know, solution of differential equation,
`y(I.F.) = intQ(I.F.)dx`
`:.`Our solution will be,
`ycosx = int cosx(-2sinx)dx`
`=>ycosx = int -sin2xdx`
`=>ycosx = cos(2x)/2+c`
`=>y = cos(2x)/2cosx + csecx`
`=>y = (2cos^2x-1)/2cosx + csecx`
`=>y = cosx - secx/2+csecx`
`=>y = cosx + secx(c-1/2)`
`=>y = cosx + Csecx`, where `C = (c-1/2)` is a constant.



Discussion

No Comment Found

Related InterviewSolutions